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We develop a general method for removing artifacts associated with the numerical solution of time-
dependent Schrödinger equation(TDSE) involving a (multiple) energy continuum discretization. This method
is the equivalent to absorbing boundaries in the case where the space is discretized. By removing the reflected
part of the wave function(on the artificial boundaries of the system), one is able to reduce the computational
cost of the calculations, with a benefit scaling as the power of the continuum multiplicity. As a demonstration,
we apply our method to the TDSE of a hydrogen atom subjected to a laser pulse, the spontaneous emission of
a two-level atom in free space, and the interaction of two photons with a two-level atom and a defect mode at
the edge of a photonic band gap.
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I. INTRODUCTION

The numerical solution of a problem that involves a con-
tinuous variable(be it energy, position, etc.) inevitably is
associated with some sort of discretization. A well-studied
example of this is the solution of the time-dependent
Schrödinger equation(TDSE) for one (active) electron sub-
ject to an electromagnetic pulse. In this case, one can expand
the electron wave function on the basis of the eigenstates of
the free atom and solve the resulting system of differential
equations for the coefficients of the eigenstates[1], which
inevitably involves a truncation of the basis(maximumE)
and a discretization of the one-electron continuum. Alterna-
tively one can solve the Schrödinger equation directly in
space, in which case the wave function is computed at a
sequence of grid points[2]. In that case we also have dis-
cretization of position and truncation of the bases(maximum
R).

Needless to say, the limitations we have to impose in or-
der to describe the system can lead to artifacts on the calcu-
lated physical quantities, on top of resolution problems. In
our example above, limiting the maximum radius of the dis-
cretization is equivalent to confining the atom to a sphere of
radiusR, with a potential that is infinite at the surface of the
sphere. This means that the wave packet of the electron
ejected from the atom by the radiation, after some timest
,R/ÎEd, will arrive at the boundary of the sphere and will
be reflected by the infinite potential barrier. Once this re-
flected wave packet approaches the atom, artifacts of the
calculation will emerge(e.g., distorted harmonics and photo-
electron spectra).

This difficulty can be circumvented by removing the wave
packet that is escaping the atom(better: the nucleus), since
this part of the wave function is far enough to be equivalent,
in its evolution, to a free electron which does not interact
with light and does not influence the atom-light dynamics.
This technique has been employed with success either by
employing an imaginary potential to imitate absorption[2] or

by continuously multiplying the wave function with a func-
tion that goes smoothly to zero at the boundary[3] for dis-
tances higher than a certain radius, but only for the case
where the wave function is computed at a sequence of grid
points.

In this respect, methods based on energy discretization
have an inherent drawback. The only way to get rid of these
artifacts of the solution was to increase the density of the
discretization, equivalent to employing a larger box, until the
wave packet has not sufficient time to reflect and reinteract
with the nucleus. This means that the appropriate size of the
basis becomes(approximately) proportional to the time in-
terval of the calculations. The latter is a severe limitation,
especially for problems involving multiple continua, since
the basis size increases as a power of the continuum multi-
plicity.

Another way around this problem is the addition of a
small imaginary part in the eigenenergies of the continuum
through complex rotation, in order to cause attenuation of the
amplitudes in time. During the time they need to reflect and
reinteract they are practically eliminated. This approach has
been followed in a number of cases over the last two decades
(among others,[4–13]). In the following, we present our
contribution in constructing absorbing boundaries(AB’s) for
spectral methods, following a different path.

We first apply our technique to the TDSE of a hydrogen
atom exposed to an electromagnetic field. This is a test
ground well studied by standard techniques, where we com-
pare our results on ionization yield, harmonic generation,
and photoelectron spectra. Then we present a generalization,
appropriate to handling the general class of problems involv-
ing time-dependent calculations with a discretized(energy)
continuumsad where the actual form of the wave function
(or of other physical quantitities discretized, like the electro-
magnetic field, for example) need not be known. In this case,
we show that the sole knowledge of the discretization spec-
trum is enough to create the necessary AB linear transforma-
tion, so the requirements for the method applicability are
minimized. This generalized version is applied in the spon-
taneous emission of a two-level atom(TLA ) in free space
and in the interaction of two photons with a two-level atom*Electronic address: makris@physics.uoc.gr
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and a defect mode at the edge of a photonic band gap(PBG).
We show also that one can modify the set of differential
equations describing the system in a way that the AB is an
inherent feature. In all cases we present, there is a substantial
computational benefit since the size of the basis we have to
use is smaller.

II. AB’s IN THE TDSE FOR AN ATOMIC SYSTEM

A. Theory

The TDSE, in the single active electron approximation, is
solved by expanding the electron wave function on a finite
basis as

uCstdl = o
n=1

N

anstdufnl, s1d

whereN is the number of basis states. The choice of basis
states depends on the problem at hand and our capabilities.
We took theufnl to be the eigenstates of the atomic Hamil-
tonian inside a box of radiusR, subject to the boundary con-
ditions fns0d=fnsRd=0. What is important about the basis
functions we employ is their completeness(energy trun-
cated). It is more transparent though if the basis statesufnl
are eigenstates of the atomic Hamiltonian. The TDSE is then
written as a set of coupled ordinary differential equations:

iaẆstd = ĤaWstd, s2d

where naturallyaWstd=sa1,a2, . . . ,aNd is the state vector of the

system andĤ is the Hamiltonian matrix expressed on our
finite basis.

As we discussed before, the inevitable discretization of
the continuum is associated with the reflection of the wave
packet at the boundaries of the box. Although in the ap-
proach we follow the spatial extent of the box is well defined
by construction, we argue that one can calculate the effective
energy-dependent box width where the system is limited due
to the energy discretization in an exact and simple way,
which depends only on the spectrum of the discretization.
We discuss in more detail this issue in the following section.

In a similar way with the techniques followed in the so-
lution of the TDSE in a lattice, we intend to multiply the
wave function with a mask functionMsrd that smoothly
goes to zero when it approaches the boundaries of the box
[14]. The implementation of this into atomic eigenstate ex-
pansions is not obvious due to their delocalized nature. A
continumm eigenstate spans all space inside the box. Never-
theless, a superposition of the eigenstates can be well local-
ized in space. Actually we can form a wave function well
localized in a region of our choice by using a correct super-
position of the eigenstates, with a localization extent in ac-
cordance with the uncertainty principle. In this spirit, we can
remove the part of the state vectoraWstd that corresponds to
the part of the wave function of the system that approaches
the boundaries. This is accomplished by a simple linear non-
unitary tranform ofaWstd, which is constructed as follows.

Since the set ofufnl constitutes a complete basis, we can
express the action ofMsrd on an eigenstate as

Mufnl = o
m=1

N

Bnmufml, s3d

Bnm=E
0

R

fmsrdMsrdfnsrddr, s4d

whereBnm are the elements of theB matrix that represents
the necessary linear transformation on the basis of the eigen-
states. In the present case, due to the simple boundary con-
ditions thata priori define an energy-independent box width,
the Bnm can be evaluated since the limits of the integral of
Eq. (4) are well defined. However, in the general case,
where, for example, more complicated boundary conditions
are employed or where the discretized continuum spectrum
is chosen by hand, this does not hold. It is not even clear if
this approach has meaning, since the eigenstates can have an
energy-dependent extent. This general case is handled in the
next section, where we calculateBnm based only on the dis-
cretization spectrum.

The summation is truncated to theNth eigenstate, since
we kept only the firstN for our state vector of the system.
One expects that this truncation would effect theB matrix,
which is true only for the few last eigenstates, which should
not play any important role in the dynamics of the system. If
the latter argument is not true, the energy range has to be
expanded in order to be an adequate representation of the
dynamics of the system anyway.

We are able to remove the wave packet only when it
approaches the boundaries since the result of the transforma-
tion on the state vector of the system depends heavily on the
state vector. If the later represents a wave function localized
close to the origin, it remains unaltered, while in the case that
it represents a wave function localized close to the bound-
aries the latter is strongly attenuated. Since the transforma-
tion is linear, a wave function which has important values
everywhere inside the box remains unaltered up to a chosen
radiusRm and attenuated smoothly thereafter. So a frequent
enough application of this transformation on the state vector
during the solution of the TDSE removes the part of the
wave function close to the box edge.

We calculated theB matrix analytically for the case of a
free particle inside a box by employing a simple analytic
form for the mask function(inverted Gaussian centered at
the box end), obtaining rather complicated expressions. We
do not present our results on this simple yet instructive prob-
lem, but we show our results on a more interesting problem,
the realistic three-dimensional(3D) solution of the TDSE for
a H atom subject to an intense laser pulse.

B. Application to the H atom

1. Case particulars

Our group has already used B-splines as a tool to repre-
sent atomic eigenstates for a number of years and our first
example continues along these lines. As explained in more
detail elsewhere[15–17], the radial part of the eigenfunc-
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tions of the electron can be expressed on a B-spline basis of
kth order inside a sphere(“box” ) of radiusR, the nth radial
eigenfunction being

Pnsrd = o
i

cinBisrd, s5d

subject to the typical fixed boundary conditionPns0d
=PnsRd=0. We followed a slightly different approach for the
calculation of the matrix elementsBnm in order to take full
advantage of the nature of B-splines. This way, the calcula-
tions are done in a faster and simpler way, leading to similar
result.

We represent theM operator on the B-spline basis as a
diagonal matrix, the elements of which are equal to 1 up to
the sm,md element and smoothly go to zero onward, withRm

being the grid point where the attenuation of the wave func-
tion starts. Since B-splines partially overlap in space, this
leads effectively to a moving average of the mask function
on the grid, with window size analogous to the order of
B-splines we use. Since the mask function has to be a
smooth function, this averaging causes minimal and insig-
nificant changes. Nevertheless, if one wishes to have abso-
lute control of the form ofM operator in space, this approxi-
mation can be lifted by constructing theM matrix with the
last part(the blockMi j with i , j ùm) being a banded with a
width equal to the order of the B-splines we use—i.e., the
number of B-splines that overlap in any internal grid point.

Then the matrix elementsBnm have to be calculated by
means of

Bnm=E
0

R So
j=1

N

cjmBjsrdDSo
i=1

N

MiicinBisrdDdr, s6d

limited due to the localized nature of B-splines toui − j u
øk/2.

Still, there is an even simpler approach in this particular
case. IfC is the matrix of the coefficientscij , thenCaW gives
the weight of the B-splines for the full wave function. Then,
we can smoothly remove the last ones and perform the in-
verse transformationC−1 to obtain the new state vector. In
this languageB=C−1MC is a linear transformation that re-
sults in a new state vector which stands for a new wave
function unaltered in the region 0, r ,Rm and smoothly at-
tenuated to 0 in the regionRm, r ,R.

Once theB matrix is calculated, one way or another, the
application of AB’s to the TDSE is simply a matter of vector-
matrix multiplication. In practice, the electron wave function
is the sum of the partial wave functions for eachl. Since for
every l we have a different set of eigenstates, a differentB
matrix has to be calculated for everyl and applied only to the
eigenstate coefficient of this specificl. One should also note
that the frequency of the application of the AB’s on the co-
efficients depends on the mask width and on the fastest wave
packet we want to absorb. A wave packet with average ve-
locity v would stay inside the absorbing boundary for a time
interval 2sR−Rmd /v, in which time it should attenuate, so the
absorbing boundary should be applied enough times in the
meantime.

One advantage of the AB’s in a spectral method, in the
way we formulate them, over their lattice analog, is that
since the coefficients of all eigenstates included in the solu-
tion of the TDSE are known in every step, it is a easy task to
keep track of the population changes after the application of
the absorbing boundary matrix. This provides additional in-
formation that energetically characterizes the part of the
wave function that is absorbed or removed. Following this
idea, we sum for every eigenstate the population change oc-
curring in every mask application. If one wishes to calculate
the photoelectron spectrum(PES), the population of every
eigenstate that has remained(i.e., not absorbed) can be added
to the total population removed from this eigenstate by ab-
sorption. In general, a similar method can be followed to
reconstruct energy resolved quantities for the problem at
hand.

2. Results

For our calculations we have used the hydrogen atom in-
side a box ofR=400 a.u. using 400 B-splines. Since we used
fixed boundary conditions, this results in about 400 discrete
eigenstates of the system. The calculation of the absorbing
boundary matrix is straightforward and the result is pre-
sented in Fig. 1(S symmetry). It is evident that the elements
of the matrix take important values close to its diagonal. The
typical width of the distribution of the weights is related to
the width of the mask function. Steeper mask functions result
in a broader distribution to provide the required bandwidth.
Actually, the matrix elements oscillate, which is better shown
in Fig. 2 where the coefficients and not their absolute value
are given. This is natural, since the result of the absorbing
boundary matrix on the state vector should be sensitive on
the relative phase(sign) of its coefficients, as explained in
more detail in the following section(Sec. III).

The first eigenstates of the system are of course the bound
ones. A part of the matrix in the region of the bound states is
shown at the right bottom part of Fig. 1. For the first bound
states the matrix is practically identical to a unitary matrix,
leaving them unaffected, a consequence of their limited ex-
tent in space. A smooth transition to the typical form of the
matrix in the continuum area occurs at the higher bound
states, which reach the absorbing boundary. For the param-
eters used, the system has 16 bound states, compatible with
what is shown in Fig. 1.

FIG. 1. The absolute value of the absorbing boundary matrix
calculated for a hydrogen atom in a box of 400 a.u. using 400
B-splines on a uniform knot sequence, resulting in approximately
400 eigenstates(for l =0). The smaller plots on the right are mag-
nified parts of the same matrix. The brighter the color, the higher
the value of the matrix element.

ABSORBING BOUNDARIES IN TIME-DEPENDENT… PHYSICAL REVIEW E 69, 066702(2004)

066702-3



A final remark concerning the general form of the matrix:
Parallel to the diagonal there appear “satellite” lines, whose
magnitude increases for the last eigenstates of the system.
We attribute this to the deficiency of the last eigenstates in
representing faithfully continuum eigenstates of the system
(the density of B-splines is not high enough to describe
them). The same is visible, to a smaller extent though, for the
first continuum states but of a different origin. Due to the
large wavelength, the boundaries affect the eigenstates. The
other way around, an inspection of the matrix can reveal the
problematic areas.

To test the efficiency of the method, we compared the
ionization yield and harmonic generation using a pulse
strong and long enough, so that the reflected part of the wave
function influences the dynamics[i.e., 1.5 eV sin2 pulse of
20 cycles(total duration) at an intensity of 231013 W/cm2],
in a box ofR=400 a.u. with and without the AB’s and in a
larger box sR=800 a.u.d where the reflection(if present)
does not influence the results. We found that the use of AB’s
provided practically identical results with the larger box, for
both physical quantities.

More interesting probably are our results on the PES. In
Fig. 3, we present the PES spectra calculated for the hydro-
gen atom exposed in a laser pulse of sin2 shape, photon
energy 1.5 eV, total duration of 10 cycles, and maximum
intensity 431013 W/cm2. In (A), we used AB’s in a box of
R=400 a.u. and the PES obtained shows a decrease for pho-
toelectron energies higher than 5 eV due to the absorption of
fast electrons at the boundaries. All structure in this spectrum
is lost for energies higher than 10 eV. In the same figure, we
show the spectrum of the absorbed photoelectrons, which is
very small for low energy electrons(not enough velocity to
reach the boundary and be absorbed). For a region of ener-
gies it is comparable to the population of the electrons not
absorbed, and for higher energies it dominates completely.
Adding together the populations of the remained and ab-
sorbed photoelectrons, we obtain the PES of part(B). We
compare this corrected PES with PES obtained in calcula-
tions without the use of AB’s. In(C) we used the same box
size, and we see that the spectra are in perfect agreement up
to about 10 eV. In this energy, the ratio of the retained to
absorbed population is about 1/10. For higher energies they
differ, and the PES calculated without AB’s loses the typical
structure of successive peaks differing by a photon energy.

The latter is of course due to the reflection of the faster
electrons by the boundaries and their artificial reinteraction
with the nucleus.

To compare the extended part of the corrected PES, we
calculated the PES for a larger box—namely,R=800 a.u..
The results are shown in part(D) of the figure. The PES
spectra are in good agreement for photoelectron energies up
to 20 eV, above which they start to have an important differ-
ence. Since we used fixed boundary conditions in the con-
struction of the eigenstates, the density of eigenstates in the
continuum drops fast with energy(actually energy goes ap-
proximately asj2, with j the discrete eigenstate index). The
distance between two successive peaks in the PES is the
photon energy. If in this energy region there are not enough
discrete eigenstates, the spectrum is not described well. AB’s
work in this case as well, but the reconstruction of the PES is
not satisfactory. In our example, the level spacing at 20 eV is
0.26 eV, which means that we have about six levels per pho-
ton energy, a rather low density.

3. Summary of Sec. II

We presented the construction of a linear transformation
on the state vector of an atomic system, equivalent to the
AB’s employed in the direct solution of the Schrödinger
equation on a lattice. The algorithm to construct this trans-
formation is simple, involving standard matrix manipulation.
The results enable one to perform time-dependent calcula-
tions on a smaller basis, using thus smaller computational
resources both in time and space. We illustrated the use of
this technique in the case of the hydrogen atom. The har-
monic spectrum of the atom calculated is free of artifacts due
to reflection and the ionization yields were practically iden-
tical with those obtained by enlarging the basis size until the

FIG. 2. Part of the state vector of the atom after applying once
the AB’s linear transformationB on an eigenstate with amplitude 1,
with energy approximately 1.1 eV. Dots point to the discrete eigen-
states of the atom; the dashed line is used only to help visualization.

FIG. 3. Common parameters for all plots: A laser pulse of sin2

shape, photon energy 1.5 eV, total duration of ten cycles, and maxi-
mum intensity 431013 W/cm2. (A). Photoelectron spectra calcu-
lated in a box ofR=400 a.u. using AB’s(solid line). The remaining
PES together with the spectrum of the absorbed electrons is given
(dashed line). (B). Corrected PES, calculated by adding the retained
photoelectron spectra with the absorbed.(C). Comparison of the
corrected PES(dashed line) with the PES calculated in a same box
(i.e., same eigenstate basis) but without use of AB’s(solid line).
(D). Comparison of the corrected PES(dashed line) with the PES
calculated in a larger box ofR=800 a.u.(solid line).
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results converge. In the case of the PES, one can use the
additional information of the populations absorbed during
the time propagation to obtain results that compare well with
the converged PES.

III. GENERALIZATION

A. Introduction

In the previous sections, AB’s were imposed on an atomic
system by using information of the form of the eigenstates in
space. Stepping back, we can see that the TDSE is solved on
the eigenstate basis of the system, so the only quantities,
except for the external field, that enter in the solution are the
energy levels(which represent both the bound and con-
tinuum parts of the spectrum) and the dipole matrix elements
between the eigenstates.

It is therefore reasonable to assume that the linear trans-
formation that is equivalent to AB’s can be calculated based
only on the above input. Physically, the dipole matrix ele-
ments are irrelevant to the artificial reflection from the
boundaries, since they affect only the amplitude transfer be-
tween the eigenstates via the external field and not with the
propagation of the free part of the wave packet in space.
Concerning the energy levels, the critical parameter is natu-
rally the energy level spacing, which is directly connected to
the radius of the sphere(fixed boundary conditions). On the
other hand, the energy range depends on where we truncate
our basis and one could hardly expect the reflection of a
wave packet energy centered around 2 eV to depend upon
the discretization in the neighborhood of 10 eV.

Based on the previous intuitive arguments, we can con-
clude that the only physical quantity that affects the reflec-
tions is the spectrum we use to represent the continuum.
Indeed, discrete modes with constant energy differenceDv
have a free evolution dynamics with period of 2p /Dv, the
time interval needed to be reflected from both boundaries of
the box(Fig. 4). This is true irrespective of the form of the
boundary conditions and the space extent of the eigenstates.
The reflection is completely determined byDv. If Dv is
variable, the dynamics are not so simple, but as we show, a
simple time rescaling suffices to proceed in the same way. In
the following, we illustrated through a simple example that
the energy levels suffice to calculate the AB linear transfor-
mation.

B. Method

1. Single continuum

We chose a physically transparent system to present our
method. We consider a photon trapped inside a perfect cavity
in one dimension. This system has the advantage that its
eigenfunctions of the electric field amplitude take the simple
analytical form

En =Î2

L
sinSnpx

L
D , s7d

satisfying immediately the Maxwell equations and the appro-
priate boundary conditionsfEns0d=EnsLd=0g.

Consider now an initial form of the electric field localized
close to zero, the left wall of the cavity. This electric field
expressed on the eigenstate basis, truncated so that we deal
with the firstN modes, would give a state vector(as usually
thenth element of the vector stands for the coefficient of the
nth eigenstate) that would resembleaW i =s1/ÎNds1,1,1, . . .d.

Keeping in mind the symmetry of the eigenstates with
respect to the center of the cavitysL /2d (in the case of even
j they are antisymmetric and in the case of oddj they are
symmetric) it is straightforward to calculate the coefficients
of a wave function being the image of the initial with respect
to the center of the well. It would just beaW r =s1/ÎNds1,
−1,1, . . .d. This represents practically(letting possible dis-
persion aside for the time being) the form of the electric field
when it is close to the right wall. In Fig. 5 we plot the
electric field for theaW i coefficients and the reflectedaW r coef-
ficients.

Due to the simple form of the time evolution of the eigen-
statessc="=1d (top of Fig. 4),

Ensx,td =Î2

L
sinSnpx

L
De−ivnt, s8d

FIG. 4. The real part of the(free) time evolution of the coeffi-
cients of an initial state vectoraW =s1,1, . . . ,1d for the first 20 dis-
crete states with constantDv (top) and with vsnd=vsn−1d
+Dvf1+2asn−1dg, vs0d=0 (bottom). The shading varies from
black to white with the state vector element value varying from −1
to +1 and the colored lines show the estimated reflection times for
every mode,trsid (see Sec. III B 1 for details). The time interval is
long enough to observe the first few reflections at the boundaries(at
multiples ofp /Dv for constantDv). Note the reflection symmetry
of the top figure with respect to the times of reflection and how the
estimated time of reflection(colored curves) matches with the time
evolution.
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vn = kn =
np

L
, s9d

it is easy to estimate the timetr needed for the electric field
to cross the cavity by calculating the necessary time for this
sign change. It turns out thattr =p /Dv, where Dv=sEn+1

−End is the discrete energy level spacing. In this caseDv
=p /L, so tr =L as expected. In the general case thatDv is
not constant(due to dispersion and/or discretization choice),
the reflection time for everyv depends on the local density
of states in a way that we discuss in more detail in the fol-
lowing.

We wish to avoid the reflection at the boundary, which is
natural for a cavity but not for the open electromagnetic field
modeled by the eigenmodes of a cavity. The key idea is that
we can project the state vector at any time on a state like the
one that is about to be reflected and subtract this part from
the initial state vector. This would remove the part of the
wave function that is reflected. Of course, AB’s should be
smooth and have a controllable extent.

It is important to perform this operation without using
information about the spatial form of the eigenmodes. This
has the following advantages. First, it makes the method
flexible and simple, since one needs to know only the energy
levels that represent the continuum. Second and more impor-
tant probably, it circumvents the problem that we mentioned
in the previous section—i.e., of evaluatingBnm through Eq.
(4) when the box extent is energy dependent. The latter
would be a severe limitation, since it limits the class of prob-
lems that we can handle to those where the eigenstates are
confined in the same box.

To accomplish this, it is sufficient to construct a new basis
consisting ofN states that correspond to different(ordered)
evolution times and gradually remove the last states from the
wave function, in accordance with the form of the absorbing
boundary we want to use. For illustration reason we show in
Fig. 6 few representative states of this type, which we calcu-
lated using the eigenstates of Eq.(8). The limited size of the
bases causes these states not to be completely localized, hav-
ing long tails. Nevertheless, this did not cause any problems,
since it should affect only the states close to the energy
boundaries of the discretized spectrum. Also this is canceled
in a large extent because we always have a superposition of
modes with a smooth variation of amplitude. Observe, for
example, the almost opposite phase of the delocalized oscil-
lation of the new basis states in Fig. 6.

The new basis is constructed as follows. We start by form-
ing a set of vectors describing different evolution times of
the system, starting from a initial state close to the origin(at
t=0), like aW i, and ending with a state close to the box bound-
ary str =p /Dvd, like aW r. Since we want to form a complete
basis forN independent modes, we split the time interval into
N parts. Using a standard Gram-Schmidt procedure, we take
this set ofN vectors and generate an orthonormal set of basis
vectors.

In brief, the new basis comes from the orthonormalization
of a N3N matrix with elements

Tij = cosSvis j − 1d
tr

sN − 1dD , s10d

where vi =si −1dDv is the frequency of theith level with
v1=0 (reference frequency) and s j −1dtr / sN−1d gives the

FIG. 5. The electric field for the state vectorsaW i (heavy line) and
aW r coefficients (dashed line) for a perfect cavity of lengthL in
arbitrary units. We took into account only the first 150 eigenstates,
enough to show the localization of the electric field in space.

FIG. 6. Few basis states of the
new “time evolution” basis used.
A basis state at timet=0 (solid
line) and two consecutive basis
states in the middle of the time in-
terval (dot-dashed and dashed
lines).
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time ranging from 0 totr. We used only the real part of the
time evolution, so that we deal with a matrix with real ele-
ments. This is sufficient, since the transformation is the same
for the real and imaginary parts of the state vector.

The matrix must haveN independent eigenvectors so that,
after orthonormalization, it provides a complete basis for the
state vector. This is the case due to the fact that the columns
of the matrix are almost orthogonal. The inner product of
two rows would be

o
j

TmjTnj = o
j

cosSsm− 1dDvs j − 1d
tr

sN − 1dD
3cosSsn − 1dDvs j − 1d

tr
sN − 1dD

. E
0

p/DV

cosfsm− 1dDvtg

3cosfsn − 1dDvtg = dmn.

The inner product is not exactly zero because it is a finite
representation of the integral. This provides confidence that
there are indeedN independent eigenvectors and verified by
the observation that the changes from the orthonormalization
to the vectors(columns) were very small. Then the absorbing
boundary matrix is constructed as explained in more detail in
the previous section. Since the eigenvectors of this basis is
time ordered, the mask now removes gradually the last. Its
extent is effectively measured in the number of modes of the
new basis it removes.

The main limitation is inevitably encountered at the
edge(s) of the discrete energy spectrum due to the lack of
neighboring levels, so one has to ascertain that these states
do not play a significant role in the phenomenon examined.
In that case, an attenuation in time of these states by a simple
exponential decay could remove the problem.

The case of dispersion or of free boundary conditions re-
quires a slightly different approach. The reflection time is not
the same for all the levels, sinceDv varies. On the contrary,
it depends for each level on the density of modes in the
vicinity of the corresponding level. This is circumvented by
creating aTij matrix, in which the propagation time[previ-
ously justs j −1dtr / sN−1d] is not common for all modes. In-
stead we use for each level the same fraction of the local
reflection time.

The local reflection time is calculated by a simple physi-
cal analogy with an equivalent problem. We want to imitate a
given discrete spectrum with the spectrum of a, more or less,
easily understood system. Consider again the electric field in
a one-dimensional cavity with perfectly reflecting bound-
aries, but now the(right) boundary position depends on fre-
quency, using, for example, a multilayer mirror. This depen-
dence shapes the spectrum(Fig. 7) in a controlled way.
Working the other way around, a given spectrum determines
the boundary positions(i.e., reflection positions for every
frequency), so the effective cavity lengthLi for every mode
is known and subsequently the reflection time, which is just
Li sincec=1.

We set the frequency of the photon of the first modev1

=0 as the reference for all frequencies. This mode is not
supported by the cavity and we deal with it separately. Then
v2 is the frequency of the photon of the first mode of the
cavity andv3 of the second mode and so on. Since nowvi

=ki−1 we haveip /Li =vi+1, so Li = ip /vi+1. Thus the reflec-
tion time for each mode istrsid=Li−1=si −1dp /vsid with the
only parameters being the frequency and index of the mode.
The reflection time for the first mode is not important since
its time evolution is trivial. Nevertheless, if necessary, one
can extrapolate the reflection time for this mode.

The result we obtained from this simple physical analogy
was tested for a number of dispersion relations,v~k,k2,k3,
and it reproduced the correct reflection time we expect. How-
ever, we found that this approach fails in the case of a dis-
continuous derivative ofdv /dk, a case that needs special
handling, for example: isolation of the discontinuity by split-
ting the discrete spectrum in two parts.

In Fig. 4 we show the local reflection time as we calculate
it which matches with the free time evolution of the modes.
For example, for the first reflection it intersects the time evo-
lution of each mode has an alternating value of ±1 and for
the second reflection all modes have value 1.

So in the case of free boundary conditions or of disper-
sion, we can use

Tij = cosSvis j − 1d
trsid

sN − 1dD , s11d

with a rescaled time coordinate different for every mode.
Effectively, this means that the extent of absorbing bound-
aries is now mode dependent and covers the same fraction of
the mode reflection time.

Besides these intuitive arguments, there exists a simple
mathematical approach which should by now be clear. Given
a set ofN modes we construct a new basis, on which we are
able to represent the coefficient vector of the system through-
out its time evolution. This basis has to be complete and time
ordered and is constructed as we showed. The reflection time
is used to make the bases complete and(almost) orthogonal.

FIG. 7. The equivalent cavity that imitates a given spectrum.
The left wall reflects all frequencies at the same point while the
right wall reflects every frequency at a different depth. So every
mode sees a cavity with different dimensionssLid enabling us to
shape the spectrum.
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2. Multiple continua

In the case of multiple discretized continua, the same
method is applicable with minor extensions. For example,
assume a double continuum, the eigenstates of which are a
product of single continuum eigenstates. For simplicity, con-
sider we useN eigenstates of the first andM eigenstates of
the second single continuum. There areN3M combinations,
so the state vector hasN3M elements that form the
finite basis of the double continuum. By suitable permuta-
tions, the state vector can be ordered like
sc11,c12,c13, . . . ,c1m,c21,c22, . . .d. The firstM states are com-
posed of the first state of continuum “1” and all the states of
continuum “2”, the nextM are composed by the second state
of continuum “1” and all the states of continuum “2” and so
on. We construct the absorbing boundary matrix for the first
block of M states using their energy levels; then for the fol-
lowing blocks ofM states it is the same since it depends only
on the spacing of the energy levels and not on their value.
Then the complete absorbing boundary matrix for continuum
“2” is a block diagonal consisting of the previous matrix.
Then we employ another set of permutations to order the
state vector likesc11,c21,c31, . . . ,cn1,c21,c22, . . .d and con-
struct in the same way the block diagonal absorbing bound-
ary matrix for the continuum “1”. The complete transforma-
tion can thus be included in a matrix being the product of the
above transformations, with a general form

Bd = P1
−1B1P1P2

−1B2P2, s12d

whereP1,2 is a suitable permutation matrix used to reorder
the state vector as described,B1,2 is the block-diagonal ab-
sorbing boundary matrix for continuum “1” or “2.”

Consider now the simple case of a double continuum,
which is composed of a small number of single-continuum
eigenstates. For example, the eigenstates of a free electron in
two dimensions are the product of the eigenstates of the elec-
tron in thex andy directions. Limiting the system to a rect-
angle and taking 30 eigenstates in both single continua
would result in 30330=900 double-continuum eigenstates.
For simplicity we choose the eigenstates to have constant
energy difference; thus, the spectrum consists of equally
spaced energy levels.

Ordering the state vector in a way that the first permuta-
tion is useless, we proceed with the construction of the
single-continuum absorbing boundary matrixB1,2 and then
of the double-continuum matrixBd which is shown in Fig. 8.
Because of the simple ordering of the state vector we chose,
there is a similarity of the structure of theBd matrix with its
single-continuum analog. In addition, it becomes clear how
this transformation actually works, by combining eigenstates
within a block(i.e., with one continuum eigenstate common)
and at the same time combining neighboring blocks in an
analog way(satellites of the diagonal of the matrix).

In practice, since the size of the matrix for the transfor-
mation increases very fast,sN3Md2, we can avoid con-
structing such a big matrix by repeatedly applying the single-
continumm absorbing matrices on the appropriate part of the
state vector every time and replacing immediately their val-
ues. One point worth noting in this case is that since the

transformation we perform is sensitive to the relative phase
of the coefficients, we have to be careful to apply the trans-
formed ordered, e.g., for the first continuum and afterwards
for the second. So in this way we haveM applications of a
N2 matrix followed byN applications of aM2 matrix.

3. Constructing differential equations with inherent AB’s

So far, the application of AB’s has been accomplished by
a linear transformation on the state vector of the system in
specific times during the propagation of the differential equa-
tions. We have found that it is also possible to add a term in
the differential equation for every mode belonging to a dis-
cretized continuum, so that the system of differential equa-
tion inherently contains AB’s.

The differential equation for the amplitude of a discrete
mode belonging to a single continuum looks like

iḃi = vibi + CT, s13d

where the termvibi is the free evolution of the mode andCT
stands for all the coupling terms that represent the interaction
of this mode with the rest of the system. We add a term
which causes attenuation to the “part” of the amplitude that
approaches the boundaries.

In brief, consider the matrixB̃=I−B. This matrix per-
forms the opposite transformation compared toB. It removes
the part of the wave function(or electric field) close to the
origin and keeps the part that is close to the boundaries, with
the same width as the mask. The latter is the part we want to
remove, so we add to the differential equation a term which
leads to an exponential decay of the amplitude of the mode,
when the wave function is approaching the boundary. We
also introduce a damping constantg so that we have control
over the decay rate. The later is directly related to the width
of the AB’s, so that there is enough time for(almost) com-
plete attenuation of the wave function. The modified differ-
ential equation reads

FIG. 8. Double continuum AB matrix. The shading varies from
black to white with increasing absolute value of the matrix ele-
ments. The structure of the matrix shows how the eigenstates are
mixed to imitate AB’s and at the same time the limitations due to
the finite bases(see text for details).
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iḃi = vibi + CT− igo
j=1

N

B̃i jbj , s14d

where the last term is our addition. When the wave function
is close to the beginning, this term is practically zero and
does not influence the dynamics of the system. Once there is
a part of the wave function approaching the boundary, this
term takes significant values and causes an attenuation of the
amplitude, but in a controlled way, so that only the part of
the wave function approaching the boundaries is removed. In
the next section, we apply this idea to the physically trans-
parent problem of spontaneous emission.

C. Applications

1. Spontaneous emission

We consider a TLA with groundsugld and excitedsueld
states with energy differencev0 s"=0d. The atom is initially
in the excited state and is coupled with the continuum of the
modes of the electromagnetic field in free space. This prob-
lem can be handled analytically, because of the simple struc-
ture of the coupling, leading to the well-known exponential
decay of the excited state. We use this simple problem to
illustrate the usefulness of AB’s.

The Hamiltonian of the system in the interaction picture
and in the rotating-wave approximation is

H = v0see+ o
l

vlal
†al + o

l

gjsals+ + al
†s−d, s15d

where s+= uglkeu and s−= uelkgu are the atomic raising and
lowering operators, andsee=s+s−. The field operators
al

† ,al correspond to the modes of the free electromagnetic
field which are coupled to the atom via the respective cou-
pling constantgl. In this Hamiltonian we have replaced the
true continuum of the modes of the electromagnetic field by
a collection of discrete modes.

In this approximation, the wave function for the full sys-
tem reads

ucl = a0ue,0l + o
l

blug,1ll, s16d

where the amplitudesbl correspond to the discrete modes of
the electromagnetic field anda0 is the amplitude of the ex-
cited state of the two-level atom.

The time evolution of the amplitudes is governed by the
Schrödinger equation, from which we obtain

iȧ0 = v0a0 + o
l=1

N

glbl, s17d

iḃl = vlbl + gla0. s18d

One has to choose a range of frequenciessvl ,vud of the
electromagnetic field and discretize this frequency range. In
our simple example we chosevl =v0/2 andvu=3v0/2, with
v0=1, and usedN equidistant modes inside this frequency
range and a constant couplinggl. For the latter we used a

value ofgl=0.03/ÎN so that the decay rate is independent of
the number of modes.

We calculated the population of the excited state as a
function of time usingN=30 andN=120 discrete modes
without AB’s (Fig. 9). The artifacts of the calculation(reviv-
als) due to the reflection of the emitted photon by the bound-
aries are apparent for both cases. Together we show the result
with N=30 discrete modes, but this time with the use of
AB’s. It is evident in this case that these artifacts are re-
moved. For a more quantitative test, we used the analytic
solution for the population of the excited state. The exponen-
tial decay we expect has to be corrected to account for two
things. First, the short-time behavior is not exponential, so
we have to perform a small time shift and, second, the ex-
ponent is slightly modifieds,3310−3d due to the limited
frequency range we considered. Taking those two effects into
account, our result differs from the analytic one by at most
0.5% atGt=12.

Switching now to the different approach we discussed in
the last part of the previous section, we modify the differen-
tial equations we solve in such a way that they include AB’s.
For this case, the new system of equations reads

iȧ0 = v0a0 + o
l=1

N

glbl, s19d

iḃl = vlbl + gla0 − igo
m=1

N

B̃lmbm, s20d

where the first equation remains the same since it represent a
true discrete state.

In Fig. 10 we show again the population of the excited
state as a function of time calculated usingN=30 discrete
modes and a depth of AB’s of ten modes(full width at half
maximum), employing the modified differential equations.
For g as small as 10−3 there is not enough time to absorb the
electric field that approaches the boundary, so we still have
artifacts due to the reflection, but less pronounced compared
to the case of no AB’s. Increasingg to 10−2 leads to results
apparently free from reflections.

FIG. 9. Population of the excited state of the two-level atom as
a function of time. For the dashed and dot-dashed curves,N=30
andN=120, respectively. The solid curve is calculated withN=30,
but with the use of AB’s. The analytic solution coincides with the
later with deviations of at most 0.5% for timeGt=12).
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A more detailed comparison is shown in Fig. 11 where we
show the ratio of our numerical calculations over the analytic
result. In the caseg is small, the deviations are larger, but for
reasonable values ofg the results are practically identical to
the analytic solution for values of time up toGt=12.

2. TLA and two photons

In this part we compare our results with previously pub-
lished ones[18], on a more complicated problem, involving
the interaction of two photons with a TLA and a defect
mode. The computational difficulties of problems involving
multiple continua—i.e., in this case the number of differen-
tial equations scaling roughly asN2 with the number of the
discrete modes necessary to describe the single continuum—
are a fertile playground for illustrating the capabilities of our
method.

A TLA is coupled to a PBG, which is modeled by a set of
discrete modes. The atom is also coupled to a defect mode
inside the gap which acts as a photon source that can pump
the atom. We follow the lines of[18] in the description of
this system.

In brief, we consider a TLA as in the previous part, only
this time the Hamiltonian due to the coupling with the defect
mode reads

H = v0see+ vdad
†ad + o

l

vlal
†al + gdsads+ + ad

†s−d

+ o
l

glsals+ + al
†s−d. s21d

The field operatorssad,ad
†d and sal ,al

†d correspond to the
defect mode and the PBG reservoir, respectively, which are
coupled to the atom via the respective coupling constantsgd
andgl.

We consider the case where the defect mode is initialy
prepared in the one-photon Fock statesn=1d and the TLA in
the excited state. So we have a total of two excitations and,
thus, the state vector of the system reads

ucs1,tdl = a0ue;1d,0l + b0ug;2d,0l + o
l

blug;1d,1ll

+ o
l

alue;0d,1ll + o
l ù m

l,m

blmug;0d,1ll, s22d

whereblm=bml and initially ucs1,0dl= ue;1d,0l.
In the context of an isotropic model, the spectral response

DIsvd for the PBG continuum is given by

DIsvd =
C

p

Qsv − ved
Îv − ve

, s23d

whereC is the effective coupling of the atomic transition to
the structured continuum,Q the step function, andve the
band-edge frequency. We follow the discretization technique
as explained in more detail in[18]. The density of states
(DOS) in the frequency range important for the system
svl ,vud is replaced by a number of discrete modes inside this
frequency range. In our problem,vl =ve, due to the step
function limitation, andvu=10C2/3 as chosen in[18]. We can
use for the frequencies of the discrete modes[18,19]

v j = ve + j2dv, s24d

with a common atom-field coupling constant for all modes:

gr .Î2C

p
Îdv. s25d

The time dependence of the amplitudes is governed by the
Schrödinger equation, and after the elimination of the off-
resonant part of the continuumsv.vud we find [20]

iȧ0 = sD0 + Dd − Sda0 + Î2gdb0 + o
j=1

N

gjbj , s26d

iḃ0 = 2Ddb0 + Î2gda0, s27d

iȧ j = sD0 + D j − Sdaj + gdbj + o
k=1,kÞ j

N

gkbjk + Î2gjbjj ,

s28d

iḃ j = sD j + Dddbj + gja0 + gdaj , s29d

FIG. 10. Population of the excited state of the TLA as a function
of time for different values of the damping in the modified differ-
ential equations. The damping constantg is 0, 10−2, and 10−1 for
the dashed, dot-dashed, and solid curves respectively. We usedN
=30 discrete modes in all cases.

FIG. 11. The ratio of the numerical over the analytic solution for
the decay of the excited state of the TLA as a function of time for
different values of the damping in the modified differential equa-
tions. The damping constantg is 0.1, 0.15, 1, and 10 for the
dashed, dot-dashed, solid black, and solid gray curves, respectively.
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iḃ jk = sD j + Dkdbjk + gkaj + gjak, s30d

iḃ j j = 2D jbj j + Î2gjaj , s31d

where j ,k are the indices of theN discrete modes andgj
=gk=gr, while D0=v0−ve, Dd=vd−ve, and D j =v j −ve.
The shift term is given by

S= o
m.

m
N

gm
2

vm − ve
, s32d

whereN is the number of discrete modes we use.
In Fig. 12 we show our results for the time evolution of

the mean photon number in the defect mode(same as Fig. 2
in [19]). We performed the same calculations forNn
=30,150 and withNab=30 using AB’s. The revivals of the
population for the caseNn=30 are evident and they appear as
early asGt=13. UsingNn=150 we are free from revivals up
to Gt=40 and this represents the converged result in this time
range[18]. Employing now AB’s and usingNab=30 modes
we obtain results that compare well with the latter. In anal-
ogy with our first example, the reconstruction of the PES of
an atom, we kept track during the propagation of the popu-
lation changes due to the absorption and we added it to the
remaining population to obtain our final result as presented.

Regarding computational cost, we had to solve aboutsf
=Nn/Nabd2=25 times fewer equations, although we have to
perform in the meantime the neccesarry transformations.
This is an important improvement, and already for the
double continuum it shows the potential of our method. Con-
sider that the improvement(in the number of equations nec-
essary) scales asfm wherem is the multiplicity of the con-
tinuum andf ratio of the necessary modes with AB’s over
the necessary modes without.

IV. SUMMARY

We have shown that it is possible to apply AB’s on the
time propagation of the Schrödinger equation for a real

atomic system on the basis of its field-free eigenstates by
using a simple linear transformation. This means that the
artificial reflection of the wave packet at the boundaries is
remedied, so the calculations can be performed on a smaller
basis(in space extent) and thus faster. Also, since informa-
tion about which part of the wave function(energy resolved)
is removed or modified during the time propagation is easily
available, one can use this additional information to recon-
struct the final state of the atom(regarding populations, not
amplitudes, since phase information is lost), in the case that
nothing was absorbed or reflected. One should note, though,
that in the case of a low density of states in the continuum,
the continuum is not represented accurately from the begin-
ning. In this case AB’s do remove artifacts due to reflections,
but the reconstruction of sensitive quantities(like the PES) is
not more succesfull than the basis allows.

More important probably, a generalization of this method
has been proposed to handle the general problem of a dis-
cretized energy continuum, based only on the energy spec-
trum used to approximate the continua. The calculation of
the linear transformation can be accomplished numerically or
even analytically in simple cases and is performed through
standard linear algebra operations. We have also shown how
to generalize this method to multiple continua, examining in
detail the case of a double continuum. We have further pro-
posed an alternative approach, in which the AB’s are incor-
porated into the(modified) system of differential equations
one has to solve.

We thus applied our method to two systems, the sponta-
neous emission of a TLA in free space and the interaction of
a TLA, a defect mode, and two photons at the adge of a
PBG. In the first case, our result practically coincides with
the analytic one, illustrating our method in this simple physi-
cal system. The second case we examined is more compli-
cated, since we chose to deal with two photons, meaning that
the number of the necessary modes is much larger. We com-
pared our results with previously published ones[19] and
demonstrated a computational improvement of more than an
order of magnitude.

The application range of this method covers all time-
dependent problems solved by energy discretization(for ex-
ample two-electron atoms[17], atom lasers[21–25], quan-
tum electrodynamics with few photons[18–20]), without
modifications. The computational benefit turns out to be sig-
nificant and scales as the power of the continuum multiplic-
ity.
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FIG. 12. The mean photon number in the defect mode calculated
usingN=30,150 modes(dashed and solid curves) andN=30 with
AB’s (gray solid curve). We also show the absorbed part of the
wave function corresponding to the mean photon number in the
defect mode(lower dashed curve), which we added to the remain-
ing part of the wave function to obtain the gray solid curve. Param-
eters are as in[18]—i.e., vu=10C2/3,D0=Dd=−0.1C2/3, and gd

=1.0C2/3.
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